CERTIFICATION OF ADA IARTS FOR REUSE

Gregory A. Hansen¥,
General Dynamics, Data Systems Division, San Diego, A

S.D. Spaulding, General Dynamics, Data Systems Division, San Diego, CA

Glenn Edgar, General Dynamics, Data Systems Division, San Diego, A

* Currently employed by the Software Engineering Institute,
Carregie-Mellon University, Pittsburgh, R

ro i

Ore of the claims made by proponents of Ada is that Ada software is
highly reusable. The fact that specifications are compiled and
accessible would make reusability seem easily achievable. However,
specifications give only a limited amount of information about a
package; moreover, a specification cannot help determine whether a
package "worked", or how well it worked.

This problem has led to the concept of "certifying" Ada parts for
reuse; that is, detemmining the worthiness of a part as a reusable
component. This paper addresses issues that are critical to reuse:
the characterization of part performance, design for reuse, and
correct utilization of parts. The paper will then address current
areas of study beneficial in the development of a certification
process.

E.l.2.1

1.

. ization of Part Perfommanc

Ada has two features which support reusability: specification
compilation and the ability to declare instantiations of generic
units. Ada specifications allow a part's interfaces to be defined,
but are not sufficient for defining reuse. It is important to have
information about a part's performance in a reuse operation to
detemine computational requirements, accuracy of calculations, etc.

Performance is not something that is easily quantified; however,
attributes associated with performance are definable. A part's
performance is definable by its behavior, or intended function, and
the computational resources it extracts from the system when
executing., These attributes are directly related, and not
independent. They must be considered in the scope of both normal
processing and exception handling.

The explicit separation of exception handling and normal processing
is essential for modularization. Without exceptions, nested flags
are required for error recovery management. This leads to the
intermingling of error (i.e. exceptions) and normal processing,
which leads to unmanageable code. Ada provides for the separation
of exception handling and normal processing, and this separation is
mandatory for parts reuse. '

Exception handling consists of three steps: exception detection,
correction, and recovery. These steps should be handled at
different places in a software system. The exceptions that are
raised, and the method of handling those exceptions, are not
ocontained in a package specification. This infommation is essential
to the part certification process.

How exceptions are handled detemmines the behavior of an Ada part
and affects the performance of that part. The detection,
ocorrection, and recovery philosophy of a system has direct bearing
on the computational requirements of that system, as does frequency
of exceptions. Subjects such as recovery vs. restart and process
synchronization must be addressed. Exception handling
standardization oould be an important factor in the certification
process.

GENERICS .

Generic programming seems to provide a logical approach to the
certification of reusable software. However, some obstacles to
reusability, such as exception handling, still exist.
Specifications for generics give no more information concerning the
behavior or performance of the corresponding body than
specifications of packages, subprograms, or tasks. Since Ada does
not allow exceptions to be passed as parameters for the
instantiation of generic parts, the use of a generic as a reusable
part is somewhat constrained. The usual exception declaration
interface between a system and a generic package is the package
specification. Thus the identity and meaning of the exception is

E.1l.2.2

determined by the generic package, not the host program. This
constitutes a reversal of accepted top down design techniques.

Another way of interfacing exceptions and reusabhle generic parts is
to have both the system and the generic unit depend on a
specifaction package of exception declarations. This technique
would be consistent with top down methodologies, but would require a
high degree of cooperation between system implementers and the

designers of reusable parts.

A third technique of exception interfacing involves the
implementation of subprograms which raise exceptions. The
subprograms would be elaborated in the system's declarative
environment and passed as actual parameters to generic
instantiations. This technique solves the problem, but at the cost
of efficiency, elegance, and design clarity.

(ONSIDERATION OF TIMING

Another factor affecting certification of reusable parts is the hard
timing requirements of a part. This infarmation is not extractable
from a package specification, and varies fram gystem to gystem. 1In
early computer architectures, timing was a fairly easily calculated
quantity. However, multitasking software systems and new
architectures which use cache, floating point accelerators, and
other features, have direct influence on timing. In fact, non-
package constraints such as context switch times have become as
important as package timing itself.

Since parts can be viewed as tree structures with many branches;
where exception handling and timing must be considered, the
characterization of a part's performance and its certification are
indeed very complex. -

E.1.2.3

II.

; ints in Desian for Parts R

The design of software parts must be done in a context independent
manner; that is, no assumptions should be made about input
oonditions. All possible error conditions should be anticipated and
treated as exceptions. The exception handling implementation must
be explicitly documented.

The Ada compiler run time default error checking features should not
be used, except as a redundant check. If run time error checking is
turned off for speed reasons, then flaws potentially exist in the
system. Therefare, error conditions must be handled by the package.
This philosophy, wmfortunately, can lead to speed impacts within the
system.

If there are time constraints placed upon a part, then a "cost"
analysis must be performed on that part prior to its implementation,
and the results of that analysis must be captured for later use. A
hierarchical funtional decomposition methodology, such as data flow
or Petri rets, can be used in the analysis process. As will be
discussed later, expert system technology can be applied to the
perf ormance of the “cost" analysis.

It should also be mentioned that there exists a potentially large
number of specific coding and design practices that can adversely
impact reusability at both the system and part level. To fully
identify these practices and address their relative impact will take
time and experience, and such a discussion is beyond the scope of
this paper.

E.1.2.4

III.

Ideally, a certified "part" should be a reusable part, However, it
is probable that parts that are considered to be 100% certified are
going to be small segments of code with limited application. The
process of certifying large segwents of code is extremely complex.

This paper has made several points concerning the reuse of Ada
parts: .

o Ada specification packages are insufficient for detemmining
reuse

o Behavior and performance of a part must be explicitly defined
and extractable

o Exception handling is an important factor in both behavior and
perf ormance

o Gererics offer a logical approach to certification of reusable
parts but have certain constraints

o Hard timing requirements must be stated, and are subject to
variations created by hardware and software envirormments

o Run time implementations must be considered as influencing a
part's behavior

Artificial Intelligence can provide some technology to reduce the
complexity of analysis for reuse. In particular, expert system
technology and object-oriented design can be applied to the problenm.
(bject-oriented design is a term used to define a methodolgy of
software development in which data items in a software system are
defined in temms of their attributes, as well as in terms of their
relationship to other data items in the system. Object-orientation
has led to the concept of "frames”, which are used extensively in
expert systems for knowledge representation. If software parts are
thought of as objects, a frame-based system can be built which
contains declarative and procedural information about parts.

The knowledge contained in such a frame would be symbolically
stated, using a formal grammar. The grammar of the frame will state
the function of the part, such as number and types of exceptions,
real-time requirements, accuracy, etc. If a hierarchical
representation is used to describe the system, attributes of parts
can be "inherited" from other parts at a higher level in the
hierarchy. An expert system can then be built to compare
requirements to information about parts, yielding a probabalistic
measure of applicability of a part to a problem. The more
information available about a part, the better a measure of
applicability can be determined.

Another technology that can be applied to reusability is that of

Archetyping. (1) Archetype comes from the latin archetypum for
"first molded as a pattern; exemplary". In this case, software

E.1.2.5

(1)

specialists capture software soon after it has been tested and
delivered, work with users of the software system, and sketch out
future requirements for systems of this type . Thus, a team of
software and domain experts develops a pattern fram which future
systems can be generated. The result of an archetyped software
system is a template that requires a tool to "fill in the blanks" to
custamize the software for an application. One such tool is the
DARTS technology, offered by General Dynamics. Archetyped software
overcomes all the limitations found with Ada generics. Archetyped
part elements, combined with a formal grammar, will provide context-
sensitive expansion of specifications into compilable Ada source

code.

It is the oconclusion of this paper that absolute certification is a
desirable but extremely difficult to achieve goal. Partial
certification is a more realistic goal and is attainable with

existing technologies.

Moreover, in order to use parts "as is", they must be kept small and
uncomplicated, otherwise the process of certification becomes very
complex. A methodology, such as archetyping, combined with the
proper tools, can make parts adaptahle, reduce complexity, and allow
for reuse of larger bodies of ¢ode.

The concepts described in-this paper reflect research being
performed at General Dynamics Data Systems Division, San Diego,
California.

Przybtylinski, S. "Archetyping- A Knowledge-Based Reuse Paradigm"
April, 1986

E.1.2.6

